Appendix G ## MEASURES OF VISIBILITY IMPAIRMENT AND LIGHT EXTINCTION Several atmospheric optical indices and approaches can be used for characterizing visibility impairment and light extinction. The CD discusses several indicators that could be used in regulating air quality for visibility protection, including: 1) light extinction (and related parameters of visual range and deciview) calculated from measurements of fine particle constituents and their associated scattering and absorption; 2) light extinction measured directly by transmissometer; 3) light scattering by particles, measured by nephelometer; 4) fine particle mass concentration; 5) contrast transmittance (CD, 8-125). In conjunction with the National Park Service, other Federal land managers, and State organizations, EPA has supported since 1986 a monitoring protocol utilizing a combination of the first four measurements. This long-term visibility monitoring network is known as IMPROVE (Interagency Monitoring of PROtected Visual Environments. The following discussion briefly describes the IMPROVE protocol and provides rationale supporting use of the light extinction coefficient, derived from both direct optical measurements and measurements of aerosol constituents, for purposes of implementing air quality management programs to improve visibility. IMPROVE provides direct measurement of fine particles and precursors that contribute to visibility impairment at more than 40 mandatory Federal Class I areas across the country. The IMPROVE network employs aerosol, optical, and scene measurements. Aerosol measurements are taken for PM₁₀ and PM_{2.5} mass, and for key constituents of PM_{2.5}, such as sulfate, nitrate, organic and elemental carbon, soil dust, and several other elements. Measurements for specific aerosol constituents are used to calculate "reconstructed" aerosol light extinction by multiplying the mass for each constituent by its empirically-derived scattering and/or absorption efficiency. Knowledge of the main constituents of a site's light extinction "budget" is critical for source apportionment and control strategy development. Optical measurements are used to directly measure light extinction or its components. Such measurements are taken principally with either a transmissometer, which measures total light extinction, or a nephelometer, which measures particle scattering (the largest human-caused component of total extinction). Scene characteristics are recorded 3 times daily with 35 millimeter photography and are used to determine the quality of visibility conditions (such as effects on color and contrast) associated with specific levels of light extinction as measured under both direct and aerosol-related methods. Because light extinction levels are derived in two ways under the IMPROVE protocol, this overall approach provides a cross-check in establishing current visibility conditions and trends and in determining how proposed changes in atmospheric constituents would affect future visibility conditions. The light extinction coefficient has been widely used in the U.S. for many years to describe visibility conditions and the change in visibility experienced due to changes in concentrations of air pollutants. As noted earlier, the extinction coefficient can be defined as the fraction of light lost or redirected per unit distance through interactions with gases and suspended particles in the atmosphere. Direct relationships exist between measured ambient pollutant concentrations and their contributions to the extinction coefficient. The contribution of each aerosol constituent to total light extinction is derived by multiplying the aerosol concentration by the extinction efficiency for that aerosol constituent. Extinction efficiencies vary by type of aerosol constituent and have been obtained through empirical studies. For certain aerosol constituents, extinction efficiencies increase significantly with increases in relative humidity. In addition to the optical effects of atmospheric constituents as characterized by the extinction coefficient, lighting conditions and scene characteristics play an important role in determining how well we see objects at a distance. Some of the conditions that influence visibility include whether a scene is viewed towards the sun or away from it, whether the scene is shaded or not, and the color and reflectance of the scene (NAPAP, 1991). For example, a mountain peak in bright sun can be seen from a much greater distance when covered with snow than when it is not. One's ability to see an object is degraded both by the reduction of image forming light from the object caused by scattering and absorption, and by the addition of non-image forming light that is scattered into the viewer's sight path. This non-image forming light is called path radiance (CD, 8-23). A common example of this effect is our inability to see stars in the daytime due to the brightness of the sky caused by Rayleigh scattering. At night, when the sunlight is not being scattered, the stars are readily seen. This same effect causes a haze to appear bright when looking at scenes that are generally towards the direction of the sun and dark when looking away from the sun. Though these non-air quality related influences on visibility can sometimes be significant, they cannot be accounted for in any practical sense in formulation of national or regional measures to minimize haze. Lighting conditions change continuously as the sun moves across the sky and as cloud conditions vary. Non-air quality influences on visibility also change when a viewer of a scene simply turns his head. Regardless of the lighting and scene conditions, however, sufficient changes in ambient concentrations of PM will lead to changes in visibility (and the extinction coefficient). The extinction coefficient integrates the effects of aerosols on visibility, yet is not dependent on scene-specific characteristics. It measures the changes in visibility linked to emissions of gases and particles that are subject to some form of human control and potential regulation, and therefore can be useful in comparing visibility impact potential of various air quality management strategies over time and space (NAPAP, 1991). By apportioning the extinction coefficient to different aerosol constituents, one can estimate changes in visibility due to changes in constituent concentrations (Pitchford and Malm, 1994). The National Research Council's 1993 report *Protecting Visibility in National Parks and Wilderness Areas* states that "[P]rogress toward the visibility goal should be measured in terms of the extinction coefficient, and extinction measurements should be routine and systematic." Thus, it is reasonable to use the change in the light extinction coefficient, determined in multiple ways, as the primary indicator of changes in visibility for regulatory purposes. Visual range is a measure of visibility that is inversely related to the extinction coefficient. Visual range can be defined as the maximum distance at which one can identify a black object against the horizon sky. The colors and fine detail of many objects will be lost at a distance much less than the visual range, however. Visual range has been widely used in air transportation and military operations in addition to its use in characterizing air quality. Because it is expressed in familiar units and has a straightforward definition, visual range is likely to continue as a popular measure of atmospheric visibility (Pitchford and Malm, 1994). Conversion from the extinction coefficient to visual range can be made with the following equation (NAPAP, 1991): Another important visibility metric is the deciview, which describes changes in uniform atmospheric extinction that can be perceived by a human observer. It is designed to be linear with respect to perceived visual changes over its entire range in a way that is analogous to the decibel scale for sound (Pitchford and Malm, 1994). Neither visual range nor the extinction coefficient has this property. For example, a 5 km change in visual range or 0.01 km⁻¹ change in extinction coefficient can result in a change that is either imperceptible or very apparent depending on baseline visibility conditions. Deciview allows one to more effectively express perceptible changes in visibility, regardless of baseline conditions. A one deciview change is a small but perceptible scenic change under many conditions, approximately equal to a 10% change in the extinction coefficient. The deciview metric also may be useful in defining goals for perceptible changes in visibility conditions under future regulatory programs. Deciview can be calculated from the light extinction coefficient by the equation: $$dv = 10\log_{10}(b_{ext}/10 \text{ Mm}^{-1})$$ Figure G-1 graphically illustrates the relationships among light extinction, visual range, and deciview.